skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tzeng, Nianfeng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Long Short-Term Memory (LSTM) deep neural networks are diverse in the tasks they can accomplish, such as image captioning and speech recognition. However, they remain susceptible to transient faults when deployed in environments with high-energy particles or radiation. It remains unknown how the potential transient faults will impact LSTM models. Therefore, we investigate the resilience of the weights and biases of these networks through four implementations of the original LSTM network. Based on the observations made through the fault injection of these networks, we propose an effective method of fault mitigation through Hamming encoding of selected weights and biases in a given network. 
    more » « less
  2. The increasing prevalence of smart devices spurs the development of emerging indoor localization technologies for supporting diverse personalized applications at home. Given marked drawbacks of popular chirp signal-based approaches, we aim at developing a novel device-free localization system via the continuous wave of the inaudible frequency. To achieve this goal, solutions are developed for fine-grained analyses, able to precisely locate moving human traces in the room-scale environment. In particular, a smart speaker is controlled to emit continuous waves at inaudible20kHz, with a co-located microphone array to record their Doppler reflections for localization. We first develop solutions to remove potential noises and then propose a novel idea by slicing signals into a set of narrowband signals, each of which is likely to include at most one body segment’s reflection. Different from previous studies, which take original signals themselves as the baseband, our solutions employ the Doppler frequency of a narrowband signal to estimate the velocity first and apply it to get the accurate baseband frequency, which permits a precise phase measurement after I-Q (i.e., in-phase and quadrature) decomposition. A signal model is then developed, able to formulate the phase with body segment’s velocity, range, and angle. We next develop novel solutions to estimate the motion state in each narrowband signal, cluster the motion states for different body segments corresponding to the same person, and locate the moving traces while mitigating multi-path effects. Our system is implemented with commodity devices in room environments for performance evaluation. The experimental results exhibit that our system can conduct effective localization for up to three persons in a room, with the average errors of 7.49cmfor a single person, with 24.06cmfor two persons, with 51.15cmfor three persons. 
    more » « less